The purpose of this paper is to discuss a generalization of the bubble transform to differential forms. The bubble transform was discussed in a previous paper by the authors for scalar valued functions, or zero-forms, and represents a new tool for the understanding of finite element spaces of arbitrary polynomial degree. The present paper contains a similar study for differential forms. From a simplicial mesh of the domain, we build a map which decomposes piecewise smooth $k$-forms into a sum of local bubbles supported on appropriate macroelements. The key properties of the decomposition are that it commutes with the exterior derivative and preserves the piecewise polynomial structure of the standard finite element spaces of $k$-forms. Furthermore, the transform is bounded in $L^2$ and also on the appropriate subspace consisting of $k$-forms with exterior derivatives in $L^2$.
翻译:本文的目的是讨论泡沫变换为不同形态的概括性。 泡沫变换在作者先前的一篇论文中讨论过, 讨论的是标量函数( 零形), 这是理解任意多元度的有限元素空间的新工具 。 本文包含对不同形态的类似研究 。 从域的简单网格, 我们绘制了一张地图, 将小巧的平滑美元形式分解成本地泡沫的总和 。 变换的关键特性是它与外部衍生物通勤, 并保存标准限定元素空间( $k$- 格式) 的片形多面体结构 。 此外, 变换以$L2 和 适当的子空间( $2美元) 结合, 包括 $k$- 外源衍生物( $_ 2美元) 。