We conduct theoretical studies on streaming-based active learning for binary classification under unknown adversarial label corruptions. In this setting, every time before the learner observes a sample, the adversary decides whether to corrupt the label or not. First, we show that, in a benign corruption setting (which includes the misspecification setting as a special case), with a slight enlargement on the hypothesis elimination threshold, the classical RobustCAL framework can (surprisingly) achieve nearly the same label complexity guarantee as in the non-corrupted setting. However, this algorithm can fail in the general corruption setting. To resolve this drawback, we propose a new algorithm which is provably correct without any assumptions on the presence of corruptions. Furthermore, this algorithm enjoys the minimax label complexity in the non-corrupted setting (which is achieved by RobustCAL) and only requires $\tilde{\mathcal{O}}(C_{\mathrm{total}})$ additional labels in the corrupted setting to achieve $\mathcal{O}(\varepsilon + \frac{C_{\mathrm{total}}}{n})$, where $\varepsilon$ is the target accuracy, $C_{\mathrm{total}}$ is the total number of corruptions and $n$ is the total number of unlabeled samples.


翻译:我们根据未知的对抗性标签腐败进行基于流学的积极积极学习的理论研究, 在未知的对抗性标签腐败下进行二进制分类。 在这种环境下, 每次学习者观察样本之前, 对手都会决定是否腐蚀标签。 首先, 我们显示, 在良好的腐败环境中( 包括错误区分设置为特殊案例), 假设消除阈值稍有扩大, 传统的 RobustCAL 框架可以( 令人惊讶地) 达到与无干扰设置几乎相同的标签复杂性保证 。 但是, 这个算法可以在总体腐败环境下失败。 为了解决这一缺陷, 我们建议一种新的算法可以在不假定存在腐败的情况下完全正确。 此外, 这个算法在非扭曲的环境下( 由RobustAL 实现 ), 只需要$tilde\ mathcal{( matthrm{ ) { (cmathrm{ glob) $ (tal $) 和 number $===n=lal==lal==xx==xx gn= gn=xn=xxxx==x=xx=x=x====xx==x=====================x================================================================================================================================================================================================================================

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员