We initiate the study of multi-stage episodic reinforcement learning under adversarial corruptions in both the rewards and the transition probabilities of the underlying system extending recent results for the special case of stochastic bandits. We provide a framework which modifies the aggressive exploration enjoyed by existing reinforcement learning approaches based on "optimism in the face of uncertainty", by complementing them with principles from "action elimination". Importantly, our framework circumvents the major challenges posed by naively applying action elimination in the RL setting, as formalized by a lower bound we demonstrate. Our framework yields efficient algorithms which (a) attain near-optimal regret in the absence of corruptions and (b) adapt to unknown levels corruption, enjoying regret guarantees which degrade gracefully in the total corruption encountered. To showcase the generality of our approach, we derive results for both tabular settings (where states and actions are finite) as well as linear-function-approximation settings (where the dynamics and rewards admit a linear underlying representation). Notably, our work provides the first sublinear regret guarantee which accommodates any deviation from purely i.i.d. transitions in the bandit-feedback model for episodic reinforcement learning.


翻译:我们开始研究在对抗性腐败下,在奖赏和过渡概率两方面进行多阶段的附带强化学习,研究基础体系的过渡概率,扩大最近对随机强盗的特殊情况的结果;我们提供了一个框架,以“面对不确定性的乐观主义”为基础,以“行动消灭”的原则补充现有强化学习方法的侵略性探索。重要的是,我们的框架绕过了在RL环境中天真地采取消灭行动所带来的重大挑战,我们通过较低的约束性加以正式证明。我们的框架产生了高效的算法,这些算法(a) 在没有腐败的情况下,近乎最佳的遗憾,(b) 适应未知的腐败程度,享有遗憾的保证,在遇到的全部腐败中优于优雅的贬低。为了展示我们的方法的一般性,我们为表式环境(在州和行动是有限的地方)以及线性功能适应的适应环境(在动态和奖赏承认线性基本代表的情况下)以及线性功能适应线性调节环境的结果。 值得注意的是,我们的工作提供了第一个子线性遗憾保证,这种算出任何偏离纯粹i.d.d.d.d.d.d.fropping regresgressprevormmmul

0
下载
关闭预览

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员