The integration of Artificial Intelligence (AI) into the field of drug discovery has been a growing area of interdisciplinary scientific research. However, conventional AI models are heavily limited in handling complex biomedical structures (such as 2D or 3D protein and molecule structures) and providing interpretations for outputs, which hinders their practical application. As of late, Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data and investigate their properties and functional relationships. Despite extensive efforts, GML methods still suffer from several deficiencies, such as the limited ability to handle supervision sparsity and provide interpretability in learning and inference processes, and their ineffectiveness in utilising relevant domain knowledge. In response, recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery with limited training instances. However, a systematic definition for this burgeoning research direction is yet to be established. This survey presents a comprehensive overview of long-standing drug discovery principles, provides the foundational concepts and cutting-edge techniques for graph-structured data and knowledge databases, and formally summarises Knowledge-augmented Graph Machine Learning (KaGML) for drug discovery. we propose a thorough review of related KaGML works, collected following a carefully designed search methodology, and organise them into four categories following a novel-defined taxonomy. To facilitate research in this promptly emerging field, we also share collected practical resources that are valuable for intelligent drug discovery and provide an in-depth discussion of the potential avenues for future advancements.


翻译:将人工智能(AI)纳入药物发现领域是跨学科科学研究的一个日益增长的领域,然而,传统人工智能模型在处理复杂的生物医学结构(如2D或3D蛋白质和分子结构)和对产出的解释方面极为有限,妨碍了其实际应用;最近,成形机学习(GML)因其制作图表结构生物医学数据并调查其特性和功能关系的特殊能力而得到相当的重视。尽管作出了广泛努力,但全球基本实验室方法仍然存在若干缺陷,例如处理监督渗透和提供学习和推断过程解释能力的能力有限,而且它们在利用相关领域知识方面缺乏效力。对此,最近的研究提议将外部生物医学知识纳入全球基本实验室管道,以便在有限的培训情况下实现更准确和可解释的药物发现。然而,尚未为这一快速建立研究方向的系统定义。这项调查对长期的药物发现原则作了全面的概述,为图表结构数据和知识数据库提供了基础概念和尖端技术,并正式总结了利用相关领域知识知识的渠道。 最新研究中,我们为深入的药物发现领域设计了一种系统研究方法。</s>

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
57+阅读 · 2021年5月3日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员