We focus on non-stationary Maxwell equations defined on a regular patch of elements as considered in the isogeometric analysis. We apply the time-integration scheme following the ideas developed by the finite difference community [M. Hochbruck, T. Jahnke, R. Schnaubelt, Convergence of an ADI splitting for Maxwell's equations, Numerishe Mathematik, 2015] to derive a weak formulations resulting in a discretization with Kronecker product matrices. Going further, we investigate the application of the residual minimization (RM) method for stabilization of the Maxwell equations within the isogeometric analysis setup. The residual minimization method is introduced in every time step of the implicit time integration scheme. We introduce the RM in such a way that we preserve the Kronecker product structure of the matrix. We take the tensor product structure of the computational patch of elements from IGA framework as an advantage, allowing for linear computational cost factorization in every time step, with the automatic stabilization guaranteed by the RM method.
翻译:我们的重点是非静止的马克斯韦尔方程式,该方程式的定义是按等离子度分析中考虑的固定部分元素定义的固定部分。我们采用根据有限差数群[M. Hochbruck、T. Jahnke、R. Schnaubelt, 用于最大差数方程式的ADI分解组合,Numerishe Mathematik, 2015年]所开发的非静止的马克斯韦尔方程式,以获得与克罗内尔产品矩阵分离的微弱配方。接着,我们调查在等离子度分析中采用残余最小化(RM)法稳定最大等离子方程式的情况。在隐含时间分解计划的每一阶段都采用了剩余最小化方法。我们引入RMM的方式是我们保存矩阵的Kronecker产品结构。我们把IGA框架中元素的计算配方块的抗拉产品结构作为优势,允许在每步的等分线计算成本乘法所保证的自动稳定。