We focus on non-stationary Maxwell equations defined on a regular patch of elements as considered in the isogeometric analysis. We apply the time-integration scheme following the ideas developed by the finite difference community [M. Hochbruck, T. Jahnke, R. Schnaubelt, Convergence of an ADI splitting for Maxwell's equations, Numerishe Mathematik, 2015] to derive a weak formulations resulting in a discretization with Kronecker product matrices. Going further, we investigate the application of the residual minimization (RM) method for stabilization of the Maxwell equations within the isogeometric analysis setup. The residual minimization method is introduced in every time step of the implicit time integration scheme. We introduce the RM in such a way that we preserve the Kronecker product structure of the matrix. We take the tensor product structure of the computational patch of elements from IGA framework as an advantage, allowing for linear computational cost factorization in every time step, with the automatic stabilization guaranteed by the RM method.


翻译:我们的重点是非静止的马克斯韦尔方程式,该方程式的定义是按等离子度分析中考虑的固定部分元素定义的固定部分。我们采用根据有限差数群[M. Hochbruck、T. Jahnke、R. Schnaubelt, 用于最大差数方程式的ADI分解组合,Numerishe Mathematik, 2015年]所开发的非静止的马克斯韦尔方程式,以获得与克罗内尔产品矩阵分离的微弱配方。接着,我们调查在等离子度分析中采用残余最小化(RM)法稳定最大等离子方程式的情况。在隐含时间分解计划的每一阶段都采用了剩余最小化方法。我们引入RMM的方式是我们保存矩阵的Kronecker产品结构。我们把IGA框架中元素的计算配方块的抗拉产品结构作为优势,允许在每步的等分线计算成本乘法所保证的自动稳定。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员