We establish stable finite element (FE) approximations of convection-diffusion initial boundary value problems using the automatic variationally stable finite element (AVS-FE) method. The transient convection-diffusion problem leads to issues in classical FE methods as the differential operator can be considered singular perturbation in both space and time. The unconditional stability of the AVS-FE method, regardless of the underlying differential operator, allows us significant flexibility in the construction of FE approximations. We take two distinct approaches to the FE discretization of the convection-diffusion problem: i) considering a space-time approach in which the temporal discretization is established using finite elements, and ii) a method of lines approach in which we employ the AVS-FE method in space whereas the temporal domain is discretized using the generalized-alpha method. In the generalized-alpha method, we discretize the temporal domain into finite sized time-steps and adopt the generalized-alpha method as time integrator. Then, we derive a corresponding norm for the obtained operator to guarantee the temporal stability of the method. We present numerical verifications for both approaches, including numerical asymptotic convergence studies highlighting optimal convergence properties. Furthermore, in the spirit of the discontinuous Petrov-Galerkin method by Demkowicz and Gopalakrishnan, the AVS-FE method also leads to readily available a posteriori error estimates through a Riesz representer of the residual of the AVS-FE approximations. Hence, the norm of the resulting local restrictions of these estimates serve as error indicators in both space and time for which we present multiple numerical verifications adaptive strategies.


翻译:我们使用自动变异稳定限量元素(AVS-FE)方法,建立了对流和变异初始边界值问题的稳定定值元素(FE)近似值。瞬间对流融合问题导致传统FE方法中的问题,因为差异操作者可以在空间和时间上被视为奇异的扰动。AVS-FE方法的无条件稳定性,不管基本的差别操作者如何,使我们在构建FE近似时可以有很大的灵活性。我们采取两种不同的办法,解决对对流和变异问题的FE直流估算分解问题:i)考虑用时间-时间方法确定时间分解限制;二)采用线方法方法,我们使用AVS-FE方法在空间中采用AVS-FE方法,而时间范围则使用通用的偏振动方法分解。在通用阿尔法方法中,我们将时间域分解为有限的时间级,采用通用的平面法方法,然后为已获得的操作者制定相应的准则,以保证时间-时间趋同性对数值的离差规则,同时进行OI-FI-FI核查。我们目前通过数字方法对数值进行数值-FILI-I-I-I-I-IL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2020年6月29日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员