This paper provides the theory about the convergence rate of the tilted version of linear smoother. We study tilted linear smoother, a nonparametric regression function estimator, which is obtained by minimizing the distance to an infinite order flat-top trapezoidal kernel estimator. We prove that the proposed estimator achieves a high level of accuracy. Moreover, it preserves the attractive properties of the infinite order flat-top kernel estimator. We also present an extensive numerical study for analysing the performance of two members of the tilted linear smoother class named tilted Nadaraya-Watson and tilted local linear in the finite sample. The simulation study shows that tilted Nadaraya-Watson and tilted local linear perform better than their classical analogs in some conditions in terms of Mean Integrated Squared Error (MISE). Finally, the performance of these estimators as well as the conventional estimators were illustrated by curve fitting to COVID-19 data for 12 countries and a dose-response data set.
翻译:本文提供了关于线性光滑倾斜版本趋同率的理论。 我们研究了倾斜线性平滑器, 这是一种非对称回归函数测算器, 其获取途径是将距离最小化到一个无限的平坦的扁顶捕捉性内核测算器。 我们证明提议的测算器具有很高的准确性。 此外, 它保留了无限的平坦顶心内核测算器的吸引力性能。 我们还为分析倾斜线性线性平滑舱的两个成员的表现提供了广泛的数字研究, 名为倾斜Nadaraya- Watson, 以及有限样本中倾斜的局部线性测测算器。 模拟研究表明, 倾斜的纳达拉亚- Watson 和倾斜的局部线性线性测算器在某些条件下,在中中中中中中中中,在中度综合平方误差(MISE)比其典型的模拟模拟性能更好。 最后, 这些估测算器和常规估测算器的性能通过与12个国家的COVID-19数据的曲线和剂量反应数据集得到了说明。