A myriad of recent literary works has leveraged generative adversarial networks (GANs) to spawn unseen evasion samples. The purpose is to annex the generated data with the original train set for adversarial training to improve the detection performance of machine learning (ML) classifiers. The quality of generating adversarial samples relies on the adequacy of training data samples. However, in low data regimes like medical diagnostic imaging and cybersecurity, the anomaly samples are scarce in number. This paper proposes a novel GAN design called Evasion Generative Adversarial Network (EVAGAN) that is more suitable for low data regime problems that use oversampling for detection improvement of ML classifiers. EVAGAN not only can generate evasion samples, but its discriminator can act as an evasion aware classifier. We have considered Auxiliary Classifier GAN (ACGAN) as a benchmark to evaluate the performance of EVAGAN on cybersecurity (ISCX-2014, CIC-2017 and CIC2018) botnet and computer vision (MNIST) datasets. We demonstrate that EVAGAN outperforms ACGAN for unbalanced datasets with respect to detection performance, training stability and time complexity. EVAGAN's generator quickly learns to generate the low sample class and hardens its discriminator simultaneously. In contrast to ML classifiers that require security hardening after being adversarially trained by GAN generated data, EVAGAN renders it needless. The experimental analysis proves that EVAGAN is an efficient evasion hardened model for low data regimes for the selected cybersecurity and computer vision datasets. Code will be available at https://github.com/rhr407/EVAGAN.


翻译:最近大量文学作品利用了基因对抗网络(GANs)来生成逃避的样本。目的是将生成的数据与最初的对抗性训练列列列列的原始列车合在一起,以提高机器学习(ML)分类人员的检测性能。生成对抗性抽样的质量取决于培训数据样本是否充足。然而,在医疗诊断成像和网络安全等低数据系统中,异常抽样数量很少。本文件建议采用一种新型的GAN设计,称为Evasion General Adversarial 网络(EVAGAN),它更适合低数据系统问题,而低数据系统使用过度抽样来改进ML分类者的检测性能。EVAGAN不仅可以生成逃避性样,而且其导师也可以作为规避性能分析者。我们认为ARCAAN(ACANAN)作为评估EVAN(IS-2014、CIC-2017和CIC2018模型)网络和计算机观察系统(MNIST)的性能。我们表明,EVAAN比对不平衡的AGGANAN(精细化数据分析)的精确度分析需要快速的系统。AVAGAG的稳定性和经训练后, 将使得GAGARC级数据变压的精细化数据变的精制成。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员