Image Retrieval is commonly evaluated with Average Precision (AP) or Recall@k. Yet, those metrics, are limited to binary labels and do not take into account errors' severity. This paper introduces a new hierarchical AP training method for pertinent image retrieval (HAP-PIER). HAPPIER is based on a new H-AP metric, which leverages a concept hierarchy to refine AP by integrating errors' importance and better evaluate rankings. To train deep models with H-AP, we carefully study the problem's structure and design a smooth lower bound surrogate combined with a clustering loss that ensures consistent ordering. Extensive experiments on 6 datasets show that HAPPIER significantly outperforms state-of-the-art methods for hierarchical retrieval, while being on par with the latest approaches when evaluating fine-grained ranking performances. Finally, we show that HAPPIER leads to better organization of the embedding space, and prevents most severe failure cases of non-hierarchical methods. Our code is publicly available at: https://github.com/elias-ramzi/HAPPIER.
翻译:图像检索率通常使用平均精度(AP) 或 Recall@k 来评估图像检索率。 然而, 这些指标只限于二进制标签, 不考虑差错的严重程度。 本文为相关的图像检索引入了一种新的等级化的图像检索培训方法( HAP- PIER ) 。 HAPPIER 是基于一种新的H- AP 衡量方法, 该方法通过整合错误的重要性和更好地评估排名来利用概念等级来完善AP。 为了对 H- AP 进行深层次模型培训, 我们仔细研究问题的结构, 设计一个平滑的、 更低约束的代金体, 并配有确保一致排序的集群损失 。 对 6个数据集的广泛实验显示, HAPIER 明显地超越了高级检索的最新方法, 同时在评价精细分级性性表现时与最新的方法相当。 最后, 我们显示, HAPPIER 能够改进嵌入空间的组织, 并防止非高度的失败案例。 我们的代码在 https://github.com/elias-ramzi/HAHAPPER 。