Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and, especially with cluttered irregularly shaped objects, the robot can not create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.
翻译:在废物分离或任何需要拆解结构的任务中,我们遇到的问题是在废物分离或任何需要拆解结构的任务中遇到一个问题。通常没有物体模型,而且,特别是混合不规则形状的物体,机器人无法因隔开而创建场景模型。我们的主要见解之一是,基于先前的感官输入,我们只有兴趣将物体从障碍周围的分解中移开。也就是说,我们只需要知道机器人能够在哪里成功移动才能规划脱钩。由于不确定性,我们把被阻动的信息整合到概率图中。地图定义了机器人成功移动到特定配置的可能性。我们利用一个运动序列的失败概率,然后可以计划并进行断开的迭接。由于我们的方法只是绕过以前遇到的障碍,因此新的移动将产生关于阻碍移动的未知障碍的信息,直到机器人学会绕过所有障碍和断裂成功。在实验中,我们使用了一个快速探索随机树(RRR-D) 的不稳定版本, 地图确定了机器人成功移动到具体配置的概率。利用一个移动的概率图的概率,我们随后可以计划并进行断动的移动的概率图。由于我们刚刚探索的2-D-A的模型方法,因此,新的运动将成功地算出我们的模型和KBA-BA的逻辑方法,将成功地算取出。