The Koopman operator is a linear operator that describes the evolution of scalar observables (i.e., measurement functions of the states) in an infinitedimensional Hilbert space. This operator theoretic point of view lifts the dynamics of a finite-dimensional nonlinear system to an infinite-dimensional function space where the evolution of the original system becomes linear. In this paper, we provide a brief summary of the Koopman operator theorem for nonlinear dynamics modeling and focus on analyzing several data-driven implementations using dynamical mode decomposition (DMD) for autonomous and controlled canonical problems. We apply the extended dynamic mode decomposition (EDMD) to identify the leading Koopman eigenfunctions and approximate a finite-dimensional representation of the discovered linear dynamics. This allows us to apply linear control approaches towards nonlinear systems without linearization approximations around fixed points. We can then examine the fidelity of using a linear controller based on a Koopman operator approximated system on under-actuated systems with basic maneuvers. We demonstrate the effectiveness of this theory through numerical simulation on two classic dynamical systems are used to show DMD methods of evaluating and approximating the Koopman operator and its effectiveness at linearizing these systems.
翻译:Koopman 操作员是一个线性操作员, 描述在无限维度的Hilbert 空间中可观察到的星标( 国家测量功能) 的演进。 该操作员的理论观察点将有限维非线性系统的动态提升到一个无线性功能空间, 原始系统的演进会变成线性。 在本文中, 我们提供Koopman 操作员非线性动态模型的理论性简要, 重点是利用动态模式分解( DMD) 分析一些数据驱动的实施, 分析自控和控制的金体问题的动态模式分解( DMD) 。 我们应用扩展的动态模式分解( EDMD) 来识别主要Koopman 元功能, 并大致显示所发现的线性线性动态动态动态动态动态动态动态的有限代表空间。 这使得我们能够对非线性系统应用线性控制方法, 而不在固定点上线性近似近似值。 然后, 我们可以检查使用基于 Kooopman 操作员对低能和受控的系统进行基本操控的模拟的系统进行线性分析的线性控制。 我们通过在两个操作员性模拟操作员性系统上展示了该理论的有效性,, 并用这些系统进行数字性模拟了这些操作性模拟了这些系统。