Many modern datasets, from areas such as neuroimaging and geostatistics, come in the form of a random sample of tensor-valued data which can be understood as noisy observations of a smooth multidimensional random function. Most of the traditional techniques from functional data analysis are plagued by the curse of dimensionality and quickly become intractable as the dimension of the domain increases. In this paper, we propose a framework for learning continuous representations from a sample of multidimensional functional data that is immune to several manifestations of the curse. These representations are constructed using a set of separable basis functions that are defined to be optimally adapted to the data. We show that the resulting estimation problem can be solved efficiently by the tensor decomposition of a carefully defined reduction transformation of the observed data. Roughness-based regularization is incorporated using a class of differential operator-based penalties. Relevant theoretical properties are also established. The advantages of our method over competing methods are demonstrated in a simulation study. We conclude with a real data application in neuroimaging.
翻译:许多现代数据集来自神经成像学和地理统计学等领域,其形式是随机抽样的有价数据,可以理解为对光滑的多层面随机功能的噪音观测,功能数据分析中的大多数传统技术都受到维度诅咒的困扰,随着领域范围的增加而迅速变得难以掌握。我们在本文件中提出了一个框架,从不受诅咒若干表现形式影响的多层面功能数据抽样中不断获得陈述。这些表述采用一套分解基础功能构建,这些功能被确定为最符合数据的最佳调整。我们表明,由此产生的估算问题可以通过对观察到的数据进行精心定义的递减变形的高温分解而有效解决。基于粗糙的正规化是采用基于操作者的不同惩罚的类别。相关的理论特性也得到了确立。模拟研究显示了我们的方法相对于相互竞争的方法的优势。我们最后用神经成像学中的真实数据应用来结束。