Core decomposition is a classic technique for discovering densely connected regions in a graph with large range of applications. Formally, a $k$-core is a maximal subgraph where each vertex has at least $k$ neighbors. A natural extension of a $k$-core is a $(k, h)$-core, where each node must have at least $k$ nodes that can be reached with a path of length $h$. The downside in using $(k, h)$-core decomposition is the significant increase in the computational complexity: whereas the standard core decomposition can be done in $O(m)$ time, the generalization can require $O(n^2m)$ time, where $n$ and $m$ are the number of nodes and edges in the given graph. In this paper we propose a randomized algorithm that produces an $\epsilon$-approximation of $(k, h)$ core decomposition with a probability of $1 - \delta$ in $O(\epsilon^{-2} hm (\log^2 n - \log \delta))$ time. The approximation is based on sampling the neighborhoods of nodes, and we use Chernoff bound to prove the approximation guarantee. We demonstrate empirically that approximating the decomposition complements the exact computation: computing the approximation is significantly faster than computing the exact solution for the networks where computing the exact solution is slow.


翻译:核心分解是一个在应用范围很广的图表中发现密连区域的经典技术。 形式上, $k$- 核心是一个最大子集, 每个顶端至少有美元邻居。 $k$- 核心的自然延伸是一个( k, h) 核心( 核心) $- 核心, 每个节点必须至少有美元( k, h) 节点, 其路径长度必须达到美元。 使用美元( k, h) 核心分解的下方是计算复杂性的显著增加: 标准核心分解可以在美元( m) 时间里完成, 而标准核心分解在最大分解中每个顶端至少有美元邻居。 一个 $( k, h) 核心分解是 $( k- k) 最高分数( $) 最高分数( 美元) 核心分解解解法, 其概率为 $( k, h) 标准核心分解析值可以在 $( eepslon) 中完成, com- climatealblationalation com comalationalizational- roup 。 roupilation( roupilation) 基础上, 我们的计算不使用正数( h=) 和正数( ) 正确的计算规则) 正确值) 。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年2月27日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
0+阅读 · 2022年2月13日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年2月27日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员