Generative adversarial networks (GANs) have gained increasing popularity in various computer vision applications, and recently start to be deployed to resource-constrained mobile devices. Similar to other deep models, state-of-the-art GANs suffer from high parameter complexities. That has recently motivated the exploration of compressing GANs (usually generators). Compared to the vast literature and prevailing success in compressing deep classifiers, the study of GAN compression remains in its infancy, so far leveraging individual compression techniques instead of more sophisticated combinations. We observe that due to the notorious instability of training GANs, heuristically stacking different compression techniques will result in unsatisfactory results. To this end, we propose the first unified optimization framework combining multiple compression means for GAN compression, dubbed GAN Slimming (GS). GS seamlessly integrates three mainstream compression techniques: model distillation, channel pruning and quantization, together with the GAN minimax objective, into one unified optimization form, that can be efficiently optimized from end to end. Without bells and whistles, GS largely outperforms existing options in compressing image-to-image translation GANs. Specifically, we apply GS to compress CartoonGAN, a state-of-the-art style transfer network, by up to 47 times, with minimal visual quality degradation. Codes and pre-trained models can be found at https://github.com/TAMU-VITA/GAN-Slimming.
翻译:在各种计算机视觉应用中,创世对抗网络(GANs)越来越受欢迎,最近开始被部署到资源紧张的移动设备中。与其他深层模型类似,最先进的GANs也具有高参数复杂性。这最近推动了压缩GANs(通常是发电机)的探索。与大量文献和压缩深层分类器的普遍成功相比,GAN压缩技术的研究仍处于初级阶段,迄今为止,利用个人压缩技术而不是更复杂的组合。我们观察到,由于培训GANs的臭名昭著不稳定性,过度堆叠不同压缩技术将导致不令人满意的结果。为此,我们提出了第一个统一优化框架,将GAN压缩、调制成GAN Slimming(GS)的多种压缩工具结合起来。GS无缝地整合了三种主流压缩技术:模型蒸馏、频道剪裁和石化技术,以及GAN微缩压目标,从头到尾部,可以高效地优化。不使用Bells和口哨,GSBERTA(GAN)的模范式将GANS-S-S-Simal-commagrational-trational-commagrational-trational-trading the Girmagrational-IAN-s)转换为GAN-s。在GAN-commadreval-deal-deal-degrational-deal-deal-commaintal-deal-commal-deal-demental-deal-deal-tramental-deal-deal-s-s-s-tomental-IGSG-sal-s-commal-IMAI-demental-demental-commal-s-IMAIMATIal-s-IMAIMATIal-s-IMAIMAI-IMA-I-I-I-IMA-I-I-I-I-I-I-I-I-I-Ial-Ial-G-Ial-Ial-Ial-Sal-I-Ial-Ial-I-I-IMA-I-I-I-I-I-I-IMA-IMA-I-IMA-IASal-I-I-I-I-I-I-I-I-I-