We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [RSW18]. This model arises as a natural special case of submodular function maximization: on query $S \subseteq V$, the oracle returns the total weight of the cut between $S$ and $V \backslash S$. For most constants $c \in (0,1]$, we nail down the query complexity of achieving a $c$-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at $c = 1/2$: we design a deterministic algorithm for global $c$-approximate max-cut in $O(\log n)$ queries for any $c < 1/2$, and show that any randomized algorithm requires $\tilde{\Omega}(n)$ queries to find a $c$-approximate max-cut for any $c > 1/2$. Additionally, we show that any deterministic algorithm requires $\Omega(n^2)$ queries to find an exact max-cut (enough to learn the entire graph), and develop a $\tilde{O}(n)$-query randomized $c$-approximation for any $c < 1$. Our approach provides two technical contributions that may be of independent interest. One is a query-efficient sparsifier for undirected weighted graphs (prior work of [RSW18] holds only for unweighted graphs). Another is an extension of the cut dimension to rule out approximation (prior work of [GPRW20] introducing the cut dimension only rules out exact solutions).
翻译:我们考虑的是[RSW18] 所审查的数值或角值模型中一个加权的未调整的图表上的查询效率全球最大值的问题。这个模型是作为亚调函数最大化的自然特例产生的:在查询$S\subseteq V$上,甲骨文返回削减总重量在$S和$V\backslash S$之间。对于大多数常数 $c =in (0,1,1美元) 来说,我们把实现美元与美元一致的随机算法的查询复杂性固定下来,对于确定和随机的算法(最高为对数值的对数值)。对于同一模型中一般的亚调函数最大化,我们观察到一个阶段的过渡值为$c=1/2美元:我们为全球美元-接近最大值的查询设计一个确定性算法。对于任何美元 < 1/2美元(log n) 的查询,我们的任何随机算算算算的算仅需要美元(美元) 任何直调的计算方法。 (n) 我们的查询要找到一个接近美元的最接近的美元 美元 美元 美元 美元 美元 。