The maximum weighted matching (MWM) problem is one of the most well-studied combinatorial optimization problems in distributed graph algorithms. Despite a long development on the problem, and the recent progress of Fischer, Mitrovic, and Uitto [FMU22] who gave a $\text{poly}(1/\epsilon, \log n)$-round algorithm for obtaining a $(1-\epsilon)$-approximate solution for the unweighted maximum matching, it had been an open problem whether a $(1-\epsilon)$-approximate MWM can be obtained in $\text{poly}(\log n, 1/\epsilon)$ rounds in the CONGEST model. Algorithms with such running times were only known for special graph classes such as bipartite graphs [AKO18] and minor-free graphs [CS22]. For general graphs, the previously known algorithms require exponential in $(1/\epsilon)$ rounds for obtaining a $(1-\epsilon)$-approximate solution [FFK21] or achieve an approximation factor of at most 2/3 [AKO18]. In this work, we settle this open problem by giving a deterministic $\text{poly}(1/\epsilon, \log n)$-round algorithm for computing a $(1-\epsilon)$-approximate MWM for general graphs in the CONGEST model. Our proposed solution extends the algorithm of Fischer, Mitrovic, and Uitto [FMU22], blends in the sequential algorithm from Duan and Pettie [DP14] and the work of Faour, Fuchs, and Kuhn [FFK21]. Interestingly, this solution also implies a CREW PRAM algorithm with $\text{poly}(1/\epsilon, \log n)$ span using only $O(m)$ processors.


翻译:最大加权匹配( MWM ) 问题在于分布式图表算法中最受研究的组合优化问题之一。 尽管在这一问题上存在长期的发展, 以及Fischer、 Mitrovic 和 Uitto [FMU22] 最近的进展, 他给出了$\ text{poly} (1/\ epsilon,\ log n) $回合算法, 用于获取$( 1\\ epsilon) 和未加权最大匹配的近值 。 在一般图表中, 之前已知的算法需要以$( 1 - epsilon) 来计算 MWMM 的近值 。 以 $( 1 - mussion) 为单位, 在 CONEST 模型中, 以美元( 1\ lix%) 来获取 美元( 1\ liversal) 的离值 ; 以 IMFIL2 和 IMF21 来计算一个特殊图表 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员