User data confidentiality protection is becoming a rising challenge in the present deep learning research. In that case, data-free quantization has emerged as a promising method to conduct model compression without the need for user data. With no access to data, model quantization naturally becomes less resilient and faces a higher risk of performance degradation. Prior works propose to distill fake images by matching the activation distribution given a specific pre-trained model. However, this fake data cannot be applied to other models easily and is optimized by an invariant objective, resulting in the lack of generalizability and diversity whereas these properties can be found in the natural image dataset. To address these problems, we propose Learning in School~(LIS) algorithm, capable to generate the images suitable for all models by inverting the knowledge in multiple teachers. We further introduce a decentralized training strategy by sampling teachers from hierarchical courses to simultaneously maintain the diversity of generated images. LIS data is highly diverse, not model-specific and only requires one-time synthesis to generalize multiple models and applications. Extensive experiments prove that LIS images resemble natural images with high quality and high fidelity. On data-free quantization, our LIS method significantly surpasses the existing model-specific methods. In particular, LIS data is effective in both post-training quantization and quantization-aware training on the ImageNet dataset and achieves up to 33\% top-1 accuracy uplift compared with existing methods.


翻译:在目前的深层学习研究中,用户数据保密保护正在成为一项日益严峻的挑战。在这种情况下,数据无量化已成为一种很有希望的方法,可以在不需要用户数据的情况下进行模型压缩,而不需要用户数据。在没有数据的情况下,模型量化自然会降低弹性,并面临性能退化的更大风险。先前的工作提议通过匹配激活分发,同时使用经过预先培训的具体模型来蒸馏假图像。然而,这种假数据无法轻易地应用于其他模型,并且通过一个变化不定的目标加以优化,导致缺乏通用性和多样性,而这些特性可以在自然图像数据集中找到。为了解决这些问题,我们提议用学校~(LIS)算法来学习,通过在多个教师中颠倒知识来生成适合所有模型的图像。我们进一步采用分散化的培训战略,通过对等级课程教师进行抽样,同时保持生成图像的多样性。LIS数据非常多样化,不针对具体模式,只要求一次性合成,以普及多种模型和应用。广泛的实验证明LIS图像类似于高质量的自然图像,并且具有高度精确性。在不公开性模型上比重的33个数据平整方法中,我们的现有LIS方法大大超越了标准。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员