Simultaneous translation (ST) outputs translation while receiving the source inputs, and hence requires a policy to determine whether to translate a target token or wait for the next source token. The major challenge of ST is that each target token can only be translated based on the current received source tokens, where the received source information will directly affect the translation quality. So naturally, how much source information is received for the translation of the current target token is supposed to be the pivotal evidence for the ST policy to decide between translating and waiting. In this paper, we treat the translation as information transport from source to target and accordingly propose an Information-Transport-based Simultaneous Translation (ITST). ITST quantifies the transported information weight from each source token to the current target token, and then decides whether to translate the target token according to its accumulated received information. Experiments on both text-to-text ST and speech-to-text ST (a.k.a., streaming speech translation) tasks show that ITST outperforms strong baselines and achieves state-of-the-art performance.
翻译:同时翻译(ST) 当收到源投入时, 同时翻译输出, 因此需要一项政策来确定是翻译目标符号还是等待下一个源符号。 ST的主要挑战在于每个目标符号只能根据当前收到的源符号进行翻译, 收到的源信息将直接影响翻译质量。 因此, 自然地, 目前目标符号的翻译需要多少源信息是ST 政策决定翻译和等待的关键证据。 本文将翻译视为从源到目标的信息传输, 并相应提出基于信息的同步翻译( ITST ) 。 ITST 量化了从每个源符号到当前目标符号的传输信息重量, 然后决定是否根据其累积的信息翻译目标符号。 文本到文本ST 和语音到文本 ST ( a. k. a. a., 流式语音翻译) 的实验显示, ITST 超越了强大的基线, 并实现了最新的业绩 。