In this work we consider the unbiased estimation of expectations w.r.t.~probability measures that have non-negative Lebesgue density, and which are known point-wise up-to a normalizing constant. We focus upon developing an unbiased method via the underdamped Langevin dynamics, which has proven to be popular of late due to applications in statistics and machine learning. Specifically in continuous-time, the dynamics can be constructed to admit the probability of interest as a stationary measure. We develop a novel scheme based upon doubly randomized estimation, which requires access only to time-discretized versions of the dynamics and are the ones that are used in practical algorithms. We prove, under standard assumptions, that our estimator is of finite variance and either has finite expected cost, or has finite cost with a high probability. To illustrate our theoretical findings we provide numerical experiments that verify our theory, which include challenging examples from Bayesian statistics and statistical physics.


翻译:在这项工作中,我们考虑对预期值(w.r.t.t.)的公正估计; 假设度值为非负值的 Lebesgue 密度的概率度度,并已知的点分到一个正常的常数。 我们注重通过被低估的Langevin动态开发一种不偏颇的方法,事实证明,由于统计和机器学习的应用,该动态因迟到而很受欢迎。 具体地说,在连续的时间里,动态度量可以建立以承认兴趣概率为固定的尺度。 我们开发了一个基于双重随机估算的新计划,它只要求访问时间分解的动态版本,并且是实用算法中所使用的。 我们证明,根据标准假设,我们的估计值是有限的差异,或者有有限的预期成本,或者有有限的成本,而且有很高的可能性。 为了说明我们的理论发现,我们提供了数字实验,用以核实我们的理论,其中包括来自Bayesian统计和统计物理的富有挑战性的例子。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年8月3日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员