Random quantum circuits have been utilized in the contexts of quantum supremacy demonstrations, variational quantum algorithms for chemistry and machine learning, and blackhole information. The ability of random circuits to approximate any random unitaries has consequences on their complexity, expressibility, and trainability. To study this property of random circuits, we develop numerical protocols for estimating the frame potential, the distance between a given ensemble and the exact randomness. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high-performing using CPU and GPU parallelism. We study 1. local and parallel random circuits to verify the linear growth in complexity as stated by the Brown-Susskind conjecture, and; 2. hardware-efficient ans\"atze to shed light on its expressibility and the barren plateau problem in the context of variational algorithms. Our work shows that large-scale tensor network simulations could provide important hints toward open problems in quantum information science.
翻译:随机量子电路已广泛的应用于量子霸权展示、化学和机器学习的变分量子算法以及黑洞信息的研究。随机电路以任意随机酉矩阵逼近的能力具有复杂性、可表达性和易训练性的优势。为了研究随机电路的这一特性,我们开发了用于估算帧潜在能量的数值协议,该潜在能量是给定系列和准确性之间的距离。我们的张量网络算法对于浅电路具有多项式复杂度,并且使用CPU和GPU并行计算高效。我们研究了1. 本地和并行随机电路以验证布朗-萨斯金德猜想所述的线性复杂度增长;和2. 硬件高效性界的研究以阐明它的表达性和变分算法中的“贫瘠高原”问题的背景。我们的工作表明大规模张量网络模拟可以为量子信息科学中的开放问题提供重要的线索。