In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matrices, which are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical investigations on synthetic data, image data , and motor imagery EEG data demonstrate the superior performance of the proposed method.
翻译:在本文中,我们开发了一种在概率学习矢量量化框架内的多值数据的新分类方法。在许多分类设想中,数据可以自然地以对称正确定矩阵来表示,这些矩阵是内在的点,存在于曲线曲线的里曼尼方形上。由于里曼尼方形的非欧几里德式几何学,传统的欧几里德机器学习算法在这些数据上产生了不良的结果。在本文中,我们概括了在配有里曼尼自然测量(麻风-异性指标)的对称正数确定矩阵的多个数据点上的数据点的概率学习矢量量化算法。我们通过利用引致的里曼距离,得出了里曼尼空间四分法的概率性学习逻辑,通过里曼梯度梯度下降获得学习规则。关于合成数据、图像数据以及运动图像EEEG数据的研究显示了拟议方法的优异性表现。