In this paper, blow-up solutions of autonomous ordinary differential equations (ODEs) which are unstable under perturbations of initial conditions are studied. Combining dynamical systems machinery (e.g. phase space compactifications, time-scale desingularizations of vector fields) with tools from computer-assisted proofs (e.g. rigorous integrators, parameterization method for invariant manifolds), these unstable blow-up solutions are obtained as trajectories on stable manifolds of hyperbolic (saddle) equilibria at infinity. In this process, important features are obtained: smooth dependence of blow-up times on initial points near blow-up, level set distribution of blow-up times, singular behavior of blow-up times on unstable blow-up solutions, organization of the phase space via separatrices (stable manifolds). In particular, we show that unstable blow-up solutions themselves, and solutions defined globally in time connected by those blow-up solutions can separate initial conditions into two regions where solution trajectories are either globally bounded or blow-up, no matter how the large initial points are.
翻译:在本文中,研究了在初始条件的扰动下不稳定的自主普通差分方程式(ODEs)的爆破解决方案。将动态系统机械(例如,空间相压、矢量场时间尺度脱色)与计算机辅助验证工具(例如,严格的集成器、变量元件参数化方法)结合使用,这些不稳定的吹爆解决方案本身作为双曲(悬浮)平衡度无限的稳定方块的轨迹获得。在这一过程中,取得了一些重要的特征:在爆炸附近的初始点上顺利依赖吹散时间、吹散时间的等级分布、不稳定的吹散解决方案的单一吹散时间行为、通过分离器(稳定管)组织阶段空间(稳定管)等。特别是,我们表明不稳定的吹动解决方案本身以及这些吹动解决方案在时间上界定的全球性解决办法可以将最初条件区分为两个区域,在这些区域中,解决办法的轨迹要么是全球捆绑的,要么是吹散的,而最初点是多大的。