Let $f (\cdot)$ be the absolute frequency of words and $r$ be the rank of words in decreasing order of frequency, then the following function can fit the rank-frequency relation \[ f (r;s,t) = \left(\frac{r_{\tt max}}{r}\right)^{1-s} \left(\frac{r_{\tt max}+t \cdot r_{\tt exp}}{r+t \cdot r_{\tt exp}}\right)^{1+(1+t)s} \] where $r_{\tt max}$ and $r_{\tt exp}$ are the maximum and the expectation of the rank, respectively; $s>0$ and $t>0$ are parameters estimated from data. On well-behaved data, there should be $s<1$ and $s \cdot t < 1$.
翻译:Let $f (cdot) $是字数的绝对频率, 美元是按频率递减顺序排列的单词的等级, 那么以下函数可以符合等级- 频率关系 \ [ f (r; s, t) =\ left (\ frac{r}t max ⁇ r ⁇ r ⁇ r ⁇ r ⁇ r ⁇ r} 1- s}\ left (\ frac{r}t max} t r\ cdot r ⁇ t r+t\ cdot exp ⁇ r} +1+( 1+t) }\ \], 其中, ${t} 和 $r ⁇ t exp} 是该等级的最大值和预期值; $>0 和 $t>0} 是根据数据估算的参数。 在良好数据上, 应该有 < $ < 1 和 $s\ cdot < < 1 。