We introduce the concept of Most, and Least, Compact Spanning Trees - denoted respectively by $T^*(G)$ and $T^\#(G)$ - of a simple, connected, undirected and unweighted graph $G(V, E, W)$. For a spanning tree $T(G) \in \mathcal{T}(G)$ to be considered $T^*(G)$, where $\mathcal{T}(G)$ represents the set of all the spanning trees of the graph $G$, it must have the least average inter-vertex pair (shortest path) distances from amongst the members of the set $\mathcal{T}(G)$. Similarly, for it to be considered $T^\#(G)$, it must have the highest average inter-vertex pair (shortest path) distances. In this work, we present an iteratively greedy rank-and-regress method that produces at least one $T^*(G)$ or $T^\#(G)$ by eliminating one extremal edge per iteration. The rank function for performing the elimination is based on the elements of the matrix of relative forest accessibilities of a graph and the related forest distance. We provide empirical evidence in support of our methodology using some standard graph families: complete graphs, the Erd\H{o}s-Renyi random graphs and the Barab\'{a}si-Albert scale-free graphs; and discuss computational complexity of the underlying methods which incur polynomial time costs.
翻译:我们引入了“多数”和“最最不常规”树的概念 — 分别以$T ⁇ (G)$和$T ⁇ (G)$-简单、连接、未方向和未加权的图形$G(V,E,W)$(G)$。对于一个覆盖树的$T(G)\in\mathcal{T}(G)$,将被视为$T ⁇ (G)$(G)$),其中$\mathcal{T}(G)$(G)$)代表图中所有覆盖树的一组,它必须拥有最小的平均双向间对配(最短的路径),即与设置的“美元”、非方向平面图成员之间最平均的距离 $T ⁇ (G) 和 $T ⁇ (G) 。 类似地,它必须拥有最高的双向双向双向双向双向(sh) 。 在这项工作中,我们呈现一种反复的贪婪的排序- 级- 级- 方法, 产生至少$T ⁇ (G) 或 $T ⁇ (G) 美元, 和 美元- g) 的对, 通过消除一个离位的双向的双向的双向,, 运行的离平平平平平平平的平的平的平的平平平平的平平平的平的平的平平的平的平的平的平的平,,,,,, 和平平平平的平的平的平的平的平的平的平平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平