Time-varying parameter VARs with stochastic volatility are routinely used for structural analysis and forecasting in settings involving a few endogenous variables. Applying these models to high-dimensional datasets has proved to be challenging due to intensive computations and over-parameterization concerns. We develop an efficient Bayesian sparsification method for a class of models we call hybrid TVP-VARs--VARs with time-varying parameters in some equations but constant coefficients in others. Specifically, for each equation, the new method automatically decides whether the VAR coefficients and contemporaneous relations among variables are constant or time-varying. Using US datasets of various dimensions, we find evidence that the parameters in some, but not all, equations are time varying. The large hybrid TVP-VAR also forecasts better than many standard benchmarks.
翻译:具有随机波动性的时变参数VARs通常用于在涉及少数内生变量的环境中进行结构分析和预测。 将这些模型应用于高维数据集已证明具有挑战性, 原因是大量计算和超参数化问题。 我们为我们称之为混合TVP-VARs-VARs-VARs的一组模型开发一种高效的贝叶斯垃圾化方法,该方法在一些方程式中具有时间变化参数,而在另一些方程式中则具有恒定系数。 具体地说,对于每个方程式,新方法自动决定VAR系数和变量之间的同时值关系是恒定的还是时间变化的。 我们利用美国不同维度的数据集,发现有证据表明,某些但并非所有方程式中的参数是时间变化的。 大型混合TVP-VAR的参数也比许多标准基准预测得更好。