People use mobile devices ubiquitously for computing, communication, storage, web browsing, and more. As a result, the information accessed and stored within mobile devices, such as financial and health information, text messages, and emails, can often be sensitive. Despite this, people frequently use their mobile devices in public areas, becoming susceptible to a simple yet effective attack, shoulder surfing. Shoulder surfing occurs when a person near a mobile user peeks at the user's mobile device, potentially acquiring passcodes, PINs, browsing behavior, or other personal information. We propose Eye-Shield, a solution to prevent shoulder surfers from accessing or stealing sensitive on-screen information. Eye-Shield is designed to protect all types of on-screen information in real time, without any serious impediment to users' interactions with their mobile devices. Eye-Shield generates images that appear readable at close distances, but appear blurry or pixelated at farther distances and wider angles. It is capable of protecting on-screen information from shoulder surfers, operating in real time, and being minimally intrusive to the intended users. Eye-Shield protects images and text from shoulder surfers by reducing recognition rates to 24.24% and 15.91%. Our implementations of Eye-Shield, with frame rates of 24 FPS for Android and 43 FPS for iOS, effectively work on screen resolutions as high as 1440x3088. Eye-Shield also incurs acceptable memory usage, CPU utilization, and energy overhead. Finally, our MTurk and in-person user studies indicate that Eye-Shield protects on-screen information without a large usability cost for privacy-conscious users.
翻译:暂无翻译