Cross-diffusion systems arise as hydrodynamic limits of lattice multi-species interacting particle models. The objective of this work is to provide a numerical scheme for the simulation of the cross-diffusion system identified in [J. Quastel, Comm. Pure Appl. Math., 45 (1992), pp. 623--679]. To simulate this system, it is necessary to provide an approximation of the so-called self-diffusion coefficient matrix of the tagged particle process. Classical algorithms for the computation of this matrix are based on the estimation of the long-time limit of the average mean square displacement of the particle. In this work, as an alternative, we propose a novel approach for computing the self-diffusion coefficient using deterministic low-rank approximation techniques, as the minimum of a high-dimensional optimization problem. This approach is then used for the simulation of the cross-diffusion system using an implicit finite volume scheme.
翻译:这项工作的目的是为模拟[J. Quastel,Comm. Pure Appl. Math., 45(1992), pp.623-679]中所查明的交叉扩散系统提供一个数字办法。为了模拟这个系统,有必要提供贴有标签的粒子过程所谓的自扩散系数矩阵的近似值。用于计算这个矩阵的典型算法是基于对颗粒平均平均平均正平方位移位的长期限值的估计。在这项工作中,作为替代办法,我们提出一种新的方法,用确定性低级近距离近似技术计算自扩散系数,作为高维优化问题的最低值。然后,用一种隐含的有限体积计划对交叉扩散系统进行模拟。