We study the problem of fairly assigning a set of discrete tasks (or chores) among a set of agents with additive valuations. Each chore is associated with a start and finish time, and each agent can perform at most one chore at any given time. The goal is to find a fair and efficient schedule of the chores, where fairness pertains to satisfying envy-freeness up to one chore (EF1) and efficiency pertains to maximality (i.e., no unallocated chore can be feasibly assigned to any agent). Our main result is a polynomial-time algorithm for computing an EF1 and maximal schedule for two agents under monotone valuations when the conflict constraints constitute an arbitrary interval graph. The algorithm uses a coloring technique in interval graphs that may be of independent interest. For an arbitrary number of agents, we provide an algorithm for finding a fair schedule under identical dichotomous valuations when the constraints constitute a path graph. We also show that stronger fairness and efficiency properties, including envy-freeness up to any chore (EFX) along with maximality and EF1 along with Pareto optimality, cannot be achieved.
翻译:暂无翻译