Elucidating the reasoning process with structured explanations from question to answer is fundamentally crucial, as it significantly enhances the interpretability and trustworthiness of question-answering (QA) systems. However, structured explanations demand models to perform intricate structured reasoning, which poses great challenges. Most existing methods focus on single-step reasoning through supervised learning, ignoring logical dependencies between steps. Meanwhile, existing reinforcement learning (RL)-based methods overlook the structured relationships, impeding RL's potential in structured reasoning. In this paper, we propose SEER, a novel method that maximizes a structure-based return to facilitate structured reasoning and explanation. Our proposed structure-based return precisely describes the hierarchical and branching structure inherent in structured reasoning, effectively capturing the intricate relationships between states. We also introduce a fine-grained reward function to meticulously delineate diverse reasoning steps. Extensive experiments show that SEER significantly outperforms state-of-the-art methods, achieving an absolute improvement of 6.9% over RL-based methods on EntailmentBank, a 4.4% average improvement on STREET benchmark, and exhibiting outstanding efficiency and cross-dataset generalization performance.
翻译:暂无翻译