The higher-order generalized singular value decomposition (HO-GSVD) is a matrix factorization technique that extends the GSVD to $N \ge 2$ data matrices, and can be used to identify shared subspaces in multiple large-scale datasets with different row dimensions. The standard HO-GSVD factors $N$ matrices $A_i\in\mathbb{R}^{m_i\times n}$ as $A_i=U_i\Sigma_i V^\text{T}$, but requires that each of the matrices $A_i$ has full column rank. We propose a modification of the HO-GSVD that extends its applicability to rank-deficient data matrices $A_i$. If the matrix of stacked $A_i$ has full rank, we show that the properties of the original HO-GSVD extend to our approach. We extend the notion of common subspaces to isolated subspaces, which identify features that are unique to one $A_i$. We also extend our results to the higher-order cosine-sine decomposition (HO-CSD), which is closely related to the HO-GSVD. Our extension of the standard HO-GSVD allows its application to datasets with with $m_i<n$ or $\text{rank}(A_i)<n$, such as are encountered in bioinformatics, neuroscience, control theory or classification problems.
翻译:高阶通用单值分解(HO- GSVD) 是一种将GSVD 扩展至 $N\ Ge 2美元数据矩阵的矩阵化技术,可用于确定多个大型数据集中具有不同行尺寸的共享子空间。标准的 HOS- GSVD 系数为 $A_ i\ in\ mathbb{R ⁇ _ m_ i times n}$A_ i= U_ i\ sigma_ i V ⁇ text{T}$,但要求每个矩阵都具有完整栏级。我们建议修改 HOS- GSVD,将其适用范围扩大到级别为级数据矩阵 $A_ i。如果堆叠的 $A_ i 完全排名,我们显示原始 HO- GS\ VIVD 的属性将延伸至孤立的子空间, 确定一个A_ $A_ i$美元 的特性。我们还将我们的结果扩展至更高级的 Com- com- ocial sucial- deal- develoption as the the HOS- dal- lax- lax- lax- lax- lax.