The generalized Ridge penalty is a powerful tool for dealing with overfitting and for high-dimensional regressions. The generalized Ridge regression can be derived as the mean of a posterior distribution with a Normal prior and a given covariance matrix. The covariance matrix controls the structure of the coefficients, which depends on the particular application. For example, it is appropriate to assume that the coefficients have a spatial structure in spatial applications. This study proposes an expectation-maximization algorithm for estimating generalized Ridge parameters whose covariance structure depends on specific parameters. We focus on three cases: diagonal (when the covariance matrix is diagonal with constant elements), Mat\'ern, and conditional autoregressive covariances. A simulation study is conducted to evaluate the performance of the proposed method, and then the method is applied to predict ocean wave heights using wind conditions.
翻译:通用脊峰惩罚是处理超装和高维回归的有力工具。 通用脊峰回归可以作为后部分布的平均值, 与常态前和特定共变矩阵相匹配。 共变矩阵控制系数的结构, 取决于特定应用。 例如, 假设系数在空间应用中具有空间结构是恰当的。 本研究提出了一种预期- 最大化算法, 用于估计通用脊脊参数, 其常态结构取决于特定参数。 我们关注三个案例: 对角( 共变矩阵与常态元素对立时)、 Mat\'ern 和 有条件的自动递增共变。 进行模拟研究以评估拟议方法的性能, 然后用该方法用风能条件预测海浪高度。