We present an algorithm which uses Fujiwara's inequality to bound algebraic functions over ellipses of a certain type, allowing us to concretely implement a rigorous Gauss-Legendre integration method for algebraic functions over a line segment. We consider path splitting strategies to improve convergence of the method and show that these yield significant practical and asymptotic benefits. We implemented these methods to compute period matrices of algebraic Riemann surfaces and these are available in SageMath.
翻译:我们提出一种算法,利用藤原的不平等将代数函数与某类的椭圆捆绑在一起,从而使我们能够具体实施严格的高斯-伦德雷集成法,对某一行段的代数函数进行代数整合。我们考虑分路战略,以改善方法的趋同,并表明这些方法会产生重大的实用和无药可救的好处。我们采用了这些方法来计算代数里里根表面的时段矩阵,这些在SageMath中可以找到。