The finite field multiplier is mainly used in many of today's state of the art digital systems and its hardware implementation for bit parallel operation may require millions of logic gates. Natural causes or soft errors in digital design could cause some of these gates to malfunction in the field, which could cause the multiplier to produce incorrect outputs. To ensure that they are not susceptible to error, it is crucial to use a finite field multiplier implementation that is effective and has a high fault detection capability. In this paper, we propose a novel fault detection scheme for a recent bit-parallel polynomial basis multiplier over GF(2m), where the proposed method aims at obtaining high fault detection performance for finite field multipliers and meanwhile maintain low-complexity implementation which is favored in resource constrained applications such as smart cards. The proposed method is based on BCH error correction codes, with an area-delay efficient architecture. The experimental results show that for 45-bit multiplier with 5-bit errors the proposed error detection and correction architecture results in 37% and %49 reduction in critical path delay with compared to the existing method in [18]. Moreover, the area overhead for 45-bit multiplier with 5 errors is within 80% which is significantly lower than the best existing BCH based fault detection method in finite field multiplier [18].


翻译:有限字段乘数主要用于当今现代数字系统的许多状态,其硬件的平行操作的硬件实施可能要求数百万个逻辑门。数字设计中的自然原因或软差错可能导致某些这些门在外地出现故障,从而可能导致乘数产生错误产出。为了确保这些门不会出错,至关重要的是使用有限场乘数实施有效且有高错检测能力的5位错误检测能力。在本文件中,我们提议对最近比GF(2米)的比位平行多核基乘数采用新的故障检测机制,其中拟议方法的目的是为有限的外地乘数取得高错觉检测性能,同时保持低兼容性,这有利于资源受限制的应用程序,如智能卡。拟议方法以BCH误差校正代码为基础,并配有区域卸载效率结构。实验结果表明,45位乘数的测错和校正结构与[18] 现有方法相比,关键路径延迟率减少37%和%49。此外,45位高错位的域位代数执行率比现有5位标准差率率为80,而现有B级测法的误差率为5倍。</s>

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员