Historical manuscript processing poses challenges like limited annotated training data and novel class emergence. To address this, we propose a novel One-shot learning-based Text Spotting (OTS) approach that accurately and reliably spots novel characters with just one annotated support sample. Drawing inspiration from cognitive research, we introduce a spatial alignment module that finds, focuses on, and learns the most discriminative spatial regions in the query image based on one support image. Especially, since the low-resource spotting task often faces the problem of example imbalance, we propose a novel loss function called torus loss which can make the embedding space of distance metric more discriminative. Our approach is highly efficient and requires only a few training samples while exhibiting the remarkable ability to handle novel characters, and symbols. To enhance dataset diversity, a new manuscript dataset that contains the ancient Dongba hieroglyphics (DBH) is created. We conduct experiments on publicly available VML-HD, TKH, NC datasets, and the new proposed DBH dataset. The experimental results demonstrate that OTS outperforms the state-of-the-art methods in one-shot text spotting. Overall, our proposed method offers promising applications in the field of text spotting in historical manuscripts.


翻译:历史手稿处理存在数据标注有限和新类别出现等挑战。为了应对这一挑战,我们提出了一种新颖的基于一次学习的文本定位(OTS)方法,使用仅有一个标注样本就能准确可靠地定位新字符。受认知研究启发,我们引入了空间对齐模块,基于一张支持图像在查询图像中寻找、关注和学习最具区分性的空间区域。特别地,由于低资源定位任务常常面临实例失衡问题,我们提出了一种称为Torus Loss的新型损失函数,可以使距离度量的嵌入空间更具区分性。我们的方法非常高效,仅需要几个训练样本,同时具有处理新字符和符号的显著能力。为了增强数据集的多样性,我们创建了一个包括古代东巴象形文字的新手稿数据集。我们在公开可用的VML-HD、TKH、NC数据集和新提出的DBH数据集上进行了实验。实验结果表明,OTS在一次文本定位中优于现有的方法。总的来说,我们提出的方法在历史手稿文本定位领域具有很大的应用前景。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员