In [ABM07], Abdulla et al. introduced the concept of decisiveness, an interesting tool for lifting good properties of finite Markov chains to denumerable ones. Later, this concept was extended to more general stochastic transition systems (STSs), allowing the design of various verification algorithms for large classes of (infinite) STSs. We further improve the understanding and utility of decisiveness in two ways. First, we provide a general criterion for proving decisiveness of general STSs. This criterion, which is very natural but whose proof is rather technical, (strictly) generalizes all known criteria from the literature. Second, we focus on stochastic hybrid systems (SHSs), a stochastic extension of hybrid systems. We establish the decisiveness of a large class of SHSs and, under a few classical hypotheses from mathematical logic, we show how to decide reachability problems in this class, even though they are undecidable for general SHSs. This provides a decidable stochastic extension of o-minimal hybrid systems. [ABM07] Parosh A. Abdulla, Noomene Ben Henda, and Richard Mayr. 2007. Decisive Markov Chains. Log. Methods Comput. Sci. 3, 4 (2007).
翻译:在[ABM07]中,Abdulla等人提出了确定性概念,这是提升有限马尔科夫链的优良特性,使其具有可量化特性的有趣工具。后来,这一概念推广到更普遍的随机过渡系统(STS),允许设计大型(无限)STS(STS)的各种核查算法。我们以两种方式进一步改进了确定性的理解和效用。首先,我们为证明一般STS的决定性性提供了一个一般性标准。这一标准非常自然,但其证明相当技术性,(严格地)概括了文献中的所有已知标准。第二,我们侧重于混合系统的一种随机混合系统(SHS),我们建立了大型SHS(无限)系统(STS)的决定性,在数学逻辑的一些经典假设下,我们展示了如何决定这一类的可探测性问题,尽管对于一般SHS来说是无法量化的。这为O-minal混合系统提供了一种可分解的、(严格意义上的)技术性扩展。[ABAMAR07, 2007年5月4号, AL-A.Annal 4号,2007年,2007年,2007年,2007年,2007年,2007年,2007年,2007年,2007年,2007年,2007年,2007年,第4号,第4号,第4号,第4号,第4号。