This paper presents a novel Transformer-based facial landmark localization network named Localization Transformer (LOTR). The proposed framework is a direct coordinate regression approach leveraging a Transformer network to better utilize the spatial information in the feature map. An LOTR model consists of three main modules: 1) a visual backbone that converts an input image into a feature map, 2) a Transformer module that improves the feature representation from the visual backbone, and 3) a landmark prediction head that directly predicts the landmark coordinates from the Transformer's representation. Given cropped-and-aligned face images, the proposed LOTR can be trained end-to-end without requiring any post-processing steps. This paper also introduces the smooth-Wing loss function, which addresses the gradient discontinuity of the Wing loss, leading to better convergence than standard loss functions such as L1, L2, and Wing loss. Experimental results on the JD landmark dataset provided by the First Grand Challenge of 106-Point Facial Landmark Localization indicate the superiority of LOTR over the existing methods on the leaderboard and two recent heatmap-based approaches.


翻译:本文介绍了一个新的基于变压器的面部里程碑式本地化网络,名为本地化变异器(LOTR)。拟议框架是一个直接协调回归法,利用变压器网络更好地利用地貌图中的空间信息。LOTR模型由三个主要模块组成:1)一个将输入图像转换成地貌图的视觉主干柱,2)一个改进视觉主干柱特征表示的变压器模块,3)一个直接预测变压器代表面部标志性坐标的标志性预测头。考虑到作物式和组合式的面部图像,拟议的LOTR可以在无需任何后处理步骤的情况下接受端到端端培训。本文还介绍了滑动Wing损失功能,该功能涉及联队损失的梯度不连续,导致比标准损失函数(如L1、L2和翼损失)更加趋同。106-点地标地标第一个大挑战提供的JD里程碑式数据集的实验结果表明LOTR优于领导板上的现有方法和最近两个热马基方法。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
58+阅读 · 2021年4月12日
专知会员服务
45+阅读 · 2020年10月31日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Arxiv
17+阅读 · 2021年3月29日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年12月20日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
相关论文
Top
微信扫码咨询专知VIP会员