In this work, we study the problem of global optimization in univariate loss functions, where we analyze the regret of the popular lower bounding algorithms (e.g., Piyavskii-Shubert algorithm). For any given time $T$, instead of the widely available simple regret (which is the difference of the losses between the best estimation up to $T$ and the global optimizer), we study the cumulative regret up to that time. With a suitable lower bounding algorithm, we show that it is possible to achieve satisfactory cumulative regret bounds for different classes of functions. For Lipschitz continuous functions with the parameter $L$, we show that the cumulative regret is $O(L\log T)$. For Lipschitz smooth functions with the parameter $H$, we show that the cumulative regret is $O(H)$. We also analytically extend our results for a broader class of functions that covers both the Lipschitz continuous and smooth functions individually.


翻译:在这项工作中,我们研究了单项损失函数的全球优化问题,我们分析了流行的低约束算法的遗憾(例如Piyavskii-Shubert算法)。在任何特定时间,我们研究的是直到那时为止的累积遗憾(即最高至T$的最佳估计值与全球最佳优化值之间的损失差别),我们分析了单项损失函数的全球优化问题。有了适当的低约束算法,我们表明,对于不同类别的功能,有可能达到令人满意的累积遗憾界限。对于使用参数$L$的Libschitz连续函数,我们表明累积的遗憾是$O(L\log T)$。对于使用参数的Libschitz平稳函数,我们表明,与参数$H$的累积遗憾是$(H),我们显示累积的遗憾是$O(H)美元。我们还分析地将我们的结果扩大到一个范围更广的功能类别,既包括Lipschitz连续功能,也包括光滑函数。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员