In multicenter randomized trials, when effect modifiers have a different distribution across centers, comparisons between treatment groups that average over centers may not apply to any of the populations underlying the individual centers. Here, we describe methods for reinterpreting the evidence produced by a multicenter trial in the context of the population underlying each center. We describe how to identify center-specific effects under identifiability conditions that are largely supported by the study design and when associations between center membership and the outcome may be present, given baseline covariates and treatment ("center-outcome associations"). We then consider an additional condition of no center-outcome associations given baseline covariates and treatment. We show that this condition can be assessed using the trial data; when it holds, center-specific treatment effects can be estimated using analyses that completely pool information across centers. We propose methods for estimating center-specific average treatment effects, when center-outcome associations may be present and when they are absent, and describe approaches for assessing whether center-specific treatment effects are homogeneous. We evaluate the performance of the methods in a simulation study and illustrate their implementation using data from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis trial.


翻译:在多中心随机试验中,当效果改变者在不同中心之间分布不同时,对中心平均的治疗群体进行比较,这些治疗群体可能不适用于各个中心的任何人口。这里,我们描述在每一中心的人口范围内,对多中心试验产生的证据进行重新解释的方法。我们描述如何在基本由研究设计所支持的可识别条件下,以及在中心成员和结果之间可能存在联系的情况下,根据基准变量和治疗(“中心结果协会”),确定中心成员与结果之间的关联。然后我们考虑中心外协会在基准变量和治疗方面的附加条件。我们用试验数据来评估这一条件。我们表明,在进行试验时,可以利用完全汇集各中心信息的分析来估计中心特有治疗效果。我们提出了估计中心特定平均治疗效果的方法,当中心外协会可能存在时,当中心成员与结果存在时,并描述评估中心特定治疗效果是否一致的方法。我们评估了模拟研究方法的绩效,并用Heatititis C Antivirral Lestrial Procrial Expressmental Testmental Testmentations的数据来说明其执行情况。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Language Model Evaluation Beyond Perplexity
Arxiv
0+阅读 · 2021年6月2日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员