In multicenter randomized trials, when effect modifiers have a different distribution across centers, comparisons between treatment groups that average over centers may not apply to any of the populations underlying the individual centers. Here, we describe methods for reinterpreting the evidence produced by a multicenter trial in the context of the population underlying each center. We describe how to identify center-specific effects under identifiability conditions that are largely supported by the study design and when associations between center membership and the outcome may be present, given baseline covariates and treatment ("center-outcome associations"). We then consider an additional condition of no center-outcome associations given baseline covariates and treatment. We show that this condition can be assessed using the trial data; when it holds, center-specific treatment effects can be estimated using analyses that completely pool information across centers. We propose methods for estimating center-specific average treatment effects, when center-outcome associations may be present and when they are absent, and describe approaches for assessing whether center-specific treatment effects are homogeneous. We evaluate the performance of the methods in a simulation study and illustrate their implementation using data from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis trial.
翻译:在多中心随机试验中,当效果改变者在不同中心之间分布不同时,对中心平均的治疗群体进行比较,这些治疗群体可能不适用于各个中心的任何人口。这里,我们描述在每一中心的人口范围内,对多中心试验产生的证据进行重新解释的方法。我们描述如何在基本由研究设计所支持的可识别条件下,以及在中心成员和结果之间可能存在联系的情况下,根据基准变量和治疗(“中心结果协会”),确定中心成员与结果之间的关联。然后我们考虑中心外协会在基准变量和治疗方面的附加条件。我们用试验数据来评估这一条件。我们表明,在进行试验时,可以利用完全汇集各中心信息的分析来估计中心特有治疗效果。我们提出了估计中心特定平均治疗效果的方法,当中心外协会可能存在时,当中心成员与结果存在时,并描述评估中心特定治疗效果是否一致的方法。我们评估了模拟研究方法的绩效,并用Heatititis C Antivirral Lestrial Procrial Expressmental Testmental Testmentations的数据来说明其执行情况。