In recent years, the need for neutral benchmark studies that focus on the comparison of methods from computational sciences has been increasingly recognised by the scientific community. While general advice on the design and analysis of neutral benchmark studies can be found in recent literature, certain amounts of flexibility always exist. This includes the choice of data sets and performance measures, the handling of missing performance values and the way the performance values are aggregated over the data sets. As a consequence of this flexibility, researchers may be concerned about how their choices affect the results or, in the worst case, may be tempted to engage in questionable research practices (e.g. the selective reporting of results or the post-hoc modification of design or analysis components) to fit their expectations or hopes. To raise awareness for this issue, we use an example benchmark study to illustrate how variable benchmark results can be when all possible combinations of a range of design and analysis options are considered. We then demonstrate how the impact of each choice on the results can be assessed using multidimensional unfolding. In conclusion, based on previous literature and on our illustrative example, we claim that the multiplicity of design and analysis options combined with questionable research practices lead to biased interpretations of benchmark results and to over-optimistic conclusions. This issue should be considered by computational researchers when designing and analysing their benchmark studies and by the scientific community in general in an effort towards more reliable benchmark results.


翻译:近年来,科学界日益认识到需要以比较计算科学的方法为重点进行中立的基准研究,这种研究需要以比较计算科学的方法为重点。虽然最近文献中可以找到关于设计和分析中立基准研究的一般建议,但始终存在着一定的灵活性,其中包括选择数据集和业绩计量,处理缺失的性能价值,以及在数据集中如何汇总性能价值。由于这种灵活性,研究人员可能担心其选择如何影响结果,或者在最坏的情况下,可能倾向于从事有疑问的研究做法(例如有选择地报告结果或对设计或分析组成部分进行超强的修改),以适应其期望或希望。为了提高对这个问题的认识,我们使用一个实例基准研究来说明,在考虑将一系列设计和分析备选办法的所有可能组合时,如何使可变的基准结果成为可变的基准。我们然后展示如何利用多层面的发展来评估每项选择对结果的影响。最后,根据以往的文献和我们的例子,我们声称,设计和分析备选办法的多重性结合有疑问的研究做法,导致在进行更可靠的科学研究研究时,在进行更可靠的研究时,通过比较分析其基础性的研究结果和过分地分析研究,从而评估其结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月27日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员