Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partition transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.
翻译:在很多科学领域,例如流行病学、气候学、生态学、基因组学、经济学和神经科学领域,查明因果关系是一个具有挑战性但又至关重要的问题,仅举其中几个例子。最近的研究显示,交替分区过渡网络(OPTNs)可以推断两个动态系统之间的联动方向。在这项工作中,我们将这一概念推广到多动态系统相互作用的研究中,我们提出了一种新的方法来检测多变量观测数据中的因果关系。通过将这种方法应用到混合线性透析过程的数字模拟以及互动的非线性动态系统的两个例子(混合的洛伦兹系统和神经质量模型网络),我们证明我们的方法可以可靠地确定相互作用的方向和相关的联动延迟。最后,我们研究了从鼠脑切切中采集的实时观测微电离器阵列电物理数据,以辨别作为适应活动基础的因果关系。我们从模拟和现实世界数据中得出的结果表明,从多变量观测数据中推断因果关系网络可以提供互补和稳健的方法。