This paper demonstrates the undecidability of a number of logics with quantification over public announcements: arbitrary public announcement logic (APAL), group announcement logic (GAL), and coalition announcement logic (CAL). In APAL we consider the informative consequences of any announcement, in GAL we consider the informative consequences of a group of agents (this group may be a proper subset of the set of all agents) all of which are simultaneously (and publicly) making known announcements. So this is more restrictive than APAL. Finally, CAL is as GAL except that we now quantify over anything the agents not in that group may announce simultaneously as well. The logic CAL therefore has some features of game logic and of ATL. We show that when there are multiple agents in the language, the satisfiability problem is undecidable for APAL, GAL, and CAL. In the single agent case, the satisfiability problem is decidable for all three logics. This paper corrects an error to the submitted version of Undecidability of Quantified Announcements, identified by Yuta Asami . The nature of the error was in the definition of the formula $cga(X)$ (see Subsection 5.2) which is corrected in this version.
翻译:暂无翻译