In a recent methodological paper, we showed how to learn chaotic dynamics along with the state trajectory from sequentially acquired observations, using local ensemble Kalman filters. Here, we more systematically investigate the possibility to use a local ensemble Kalman filter with either covariance localisation or local domains, in order to retrieve the state and a mix of key global and local parameters. Global parameters are meant to represent the surrogate dynamical core, for instance through a neural network, which is reminiscent of data-driven machine learning of dynamics, while the local parameters typically stand for the forcings of the model. Aiming at joint state and parameter estimation, a family of algorithms for covariance and local domain localisation is proposed. In particular, we show how to rigorously update global parameters using a local domain ensemble Kalman filter (EnKF) such as the local ensemble transform Kalman filter (LETKF), an inherently local method. The approach is tested with success on the 40-variable Lorenz model using several of the local EnKF flavors. A two-dimensional illustration based on a multi-layer Lorenz model is finally provided. It uses radiance-like non-local observations. It features both local domains and covariance localisation in order to learn the chaotic dynamics and the local forcings. This paper more generally addresses the key question of online estimation of both global and local model parameters.
翻译:在最近一份方法学文件中,我们展示了如何从按顺序获得的观测中学习混乱动态以及州轨轨迹, 使用本地混合的 Kalman 过滤器。 在这里, 我们更系统地调查使用本地共变本地化或本地域, 以便检索州和关键全球和地方参数组合。 全球参数意在通过神经网络来代表代理国的动态核心, 例如通过神经网络, 这是数据驱动机器对动态的学习的记忆, 而本地参数通常代表模型的强制力。 我们的目标是联合进行州和参数估算, 提议对共变和本地域本地域本地化进行一系列的算法。 特别是, 我们展示了如何使用本地域共变换Kalman过滤器( EnKF) 等本地共变换Kalman过滤器(LETKF) 来严格更新全球参数。 这种方法在40种可变本地参数模型上的成功估算了Lorenz 模型, 并使用本地的 Enk Fcries 。 一种基于多域域域域域域域级核心的双维的图像演示, 学习了本地级系统。 和本地级的系统化系统。 它的双维的演示, 和本地级的系统化, 最后提供了多域级的系统。 它的系统, 和本地级的系统化的系统化的系统化的系统化, 。