A critical decision point when training predictors using multiple studies is whether these studies should be combined or treated separately. We compare two multi-study learning approaches in the presence of potential heterogeneity in predictor-outcome relationships across datasets. We consider 1) merging all of the datasets and training a single learner, and 2) multi-study ensembling, which involves training a separate learner on each dataset and combining the predictions resulting from each learner. In a linear regression setting, we show analytically and confirm via simulation that merging yields lower prediction error than ensembling when the predictor-outcome relationships are relatively homogeneous across studies. However, as cross-study heterogeneity increases, there exists a transition point beyond which ensembling outperforms merging. We provide analytic expressions for the transition point in various scenarios, study asymptotic properties, and illustrate how transition point theory can be used for deciding when studies should be combined with an application from metabolomics.


翻译:在使用多种研究的培训预测人员时,一个关键的决定点是这些研究是否应该合并或分开处理。我们比较了两个多研究学习方法,因为各数据集之间在预测和结果关系中可能存在差异。我们考虑(1) 将所有数据集合并并培训一名单一学习者,(2) 多研究组合,这涉及对每个数据集的单独学习者进行培训,并将每个学习者的预测结果合并在一起。在线性回归环境中,我们通过模拟进行分析和确认,在预测和结果关系相对相同的研究中,合并的预测错误比混合的错误要低。然而,随着交叉研究的异质性增加,还存在一个过渡点,超越这一过渡点,将外形组合在一起。我们为各种情景的过渡点提供了分析表达,研究无症状特性,并说明了在决定何时研究应当与代谢学应用相结合时如何使用过渡点理论。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
41+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Semi-parametric Bayesian Additive Regression Trees
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月17日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
41+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员