For an input graph $G$, an additive spanner is a sparse subgraph $H$ whose shortest paths match those of $G$ up to small additive error. We prove two new lower bounds in the area of additive spanners: 1) We construct $n$-node graphs $G$ for which any spanner on $O(n)$ edges must increase a pairwise distance by $+\Omega(n^{1/7})$. This improves on a recent lower bound of $+\Omega(n^{1/10.5})$ by Lu, Wein, Vassilevska Williams, and Xu [SODA '22]. 2) A classic result by Coppersmith and Elkin [SODA '05] proves that for any $n$-node graph $G$ and set of $p = O(n^{1/2})$ demand pairs, one can exactly preserve all pairwise distances among demand pairs using a spanner on $O(n)$ edges. They also provided a lower bound construction, establishing that that this range $p = O(n^{1/2})$ cannot be improved. We strengthen this lower bound by proving that, for any constant $k$, this range of $p$ is still unimprovable even if the spanner is allowed $+k$ additive error among the demand pairs. This negatively resolves an open question asked by Coppersmith and Elkin [SODA '05] and again by Cygan, Grandoni, and Kavitha [STACS '13] and Abboud and Bodwin [SODA '16]. At a technical level, our lower bounds are obtained by an improvement to the entire obstacle product framework used to compose ``inner'' and ``outer'' graphs into lower bound instances. In particular, we develop a new strategy for analysis that allows certain non-layered graphs to be used in the product, and we use this freedom to design better inner and outer graphs that lead to our new lower bounds.


翻译:对于一个输入方块 $G$, 添加度范围是一条稀薄的子图 $H$, 其最短路径与美元匹配到小添加错误。 我们在添加方块中证明两个新的下限 : 1) 我们建造了美元- 诺德图形 $G$, 任何球员在$(n) 边缘上必须增加一个双向距离 $Omega(n) 1/ 7} 。 这可以保持最近较低的 $Omega(n) 1/ 10.5} 的下限 $($) 。 Lu, Wein, Vassilevska Williams, 和 Xu [SODAR'22] 。 2 Copsmithmith and Elkin [S Onnn-nodegroupal office offerral'a $(nn) $(n) 美元 美元 美元(n) 美元(n) 美元 美元(n) 美元(n) 美元(n) 美元(n) 美元) 美元(n 美元) 美元(nremodealbbb) ralb) lax e lax lax lax lax lax lax lax lax lax lax lax lax lax lex lex lex) lex a li li lex lex lax lex a li lex lex lex lex lex a a li li lex a li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li li

0
下载
关闭预览

相关内容

本专题讨论会主要讨论离散问题之有效演算法与资料结构。除了这些方法和结构的设计,还包括它们的使用、性能分析以及与它们的发展或局限性相关的数学问题。性能分析可以是分析性的,也可以是实验性的,可以是针对最坏情况或预期情况的性能。研究可以是理论性的,也可以是基于实践中出现的数据集,可以解决绩效分析中涉及的方法学问题。官网链接:https://www.siam.org/conferences/cm/conference/soda20
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Coeffects for Sharing and Mutation
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员