This work studies a real-time environment monitoring scenario in the Industrial Internet of Things (IIoT), where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the AoI threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50% less system energy and outperforms the other baselines.


翻译:这项工作在物业工业互联网(IIoT)中研究实时环境监测情景,无线传感器积极主动地收集环境数据并将其传送给控制器。我们采用金融数学风险敏感性概念,目的是共同尽量减少网络能源消耗的平均值、差异和其他较高层次的统计数据,但受AoI临界值违反概率和AoI超出预定阈值的限制。我们利用极端价值理论的结果来描述极端AoI的陈旧性,并通过将Lyapunov优化和联合学习(FL)原则结合起来,提出分配权力的办法。模拟结果显示,拟议的FL分布式解决方案与集中基线相同,同时消耗28.50%的系统能量,超出其他基线。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员