In real-time systems, priorities assigned to real-time tasks determine the order of task executions, by relying on an underlying task scheduling policy. Assigning optimal priority values to tasks is critical to allow the tasks to complete their executions while maximizing safety margins from their specified deadlines. This enables real-time systems to tolerate unexpected overheads in task executions and still meet their deadlines. In practice, priority assignments result from an interactive process between the development and testing teams. In this article, we propose an automated method that aims to identify the best possible priority assignments in real-time systems, accounting for multiple objectives regarding safety margins and engineering constraints. Our approach is based on a multi-objective, competitive coevolutionary algorithm mimicking the interactive priority assignment process between the development and testing teams. We evaluate our approach by applying it to six industrial systems from different domains and several synthetic systems. The results indicate that our approach significantly outperforms both random search and solutions defined by practitioners. Our approach scales to complex industrial systems as an online analysis method that attempts to find (near-)optimal solutions within acceptable time, i.e., less than two days.


翻译:在实时系统中,分配给实时任务的优先事项取决于任务时间安排政策,从而决定任务执行的先后顺序。给任务分配最佳优先价值至关重要,以便任务完成处决,同时从规定的最后期限中最大限度地增加安全幅度。这使得实时系统能够容忍任务执行中意外的间接费用,并且仍然在最后期限之前完成。实际上,优先分配产生于开发和测试小组之间的交互过程。在本条中,我们建议一种自动化方法,目的是确定实时系统中可能的最佳优先分配,并计及安全幅度和工程限制方面的多重目标。我们的方法是以多目标、竞争性的连动算法为基础,以模拟开发和测试小组之间的互动优先分配过程。我们评估我们的方法,将它应用到不同领域的六个工业系统和几个合成系统。结果显示,我们的方法大大超过从业人员随机搜索和确定的解决办法。我们对复杂工业系统采用的方法,作为在可接受的时间内试图找到(近)最佳解决办法的在线分析方法,即不到两天。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning Recommender Systems from Multi-Behavior Data
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员