It is known that data rates in standard cellular networks are limited due to inter-cell interference. An effective solution of this problem is to use the multi-cell cooperation idea. In Cloud Radio Access Network, which is a candidate solution in 5G and beyond, cooperation is applied by means of central processors (CPs) connected to simple remote radio heads with finite capacity fronthaul links. In this study, we consider a downlink scenario and aim to minimize total power spent by designing beamformers. We consider the case where perfect channel state information is not available in the CP. The original problem includes discontinuous terms with many constraints. We propose a novel method which transforms the problem into a smooth constraint-free form and a solution is found by the gradient descent approach. As a comparison, we consider the optimal method solving an extensive number of convex sub-problems, a known heuristic search algorithm and some sparse solution techniques. Heuristic search methods find a solution by solving a subset of all possible convex sub-problems. Sparse techniques apply some norm approximation ($\ell_0/\ell_1, \ell_0/\ell_2$) or convex approximation to make the objective function more tractable. We also derive a theoretical performance bound in order to observe how far the proposed method performs off the optimal method when running the optimal method is prohibitive due to computational complexity. Detailed simulations show that the performance of the proposed method is close to the optimal one, and it outperforms other methods analyzed.


翻译:已知标准蜂窝网络的数据率因细胞间干扰而受到限制。 这一问题的有效解决办法是使用多细胞合作理念。 在云中无线电访问网络中, 云中无线电访问网络是5G及以后的一种候选解决方案, 合作通过中央处理器(CPs) 与具有有限容量前厅链接的简单远程无线电头连接。 在这项研究中, 我们考虑下行连接方案, 目的是通过设计光源设计来最大限度地减少全部电源。 我们考虑的是, 下行链路情景, 目的是将设计光谱仪所用的全部电源最小化。 最初的问题包括多种限制的不连续术语。 我们提出了一种新颖的方法, 将问题转换为平滑无限制的形式, 并通过梯度下移方法找到解决办法。 作为比较, 我们考虑的是解决大量 convex 子问题的最佳方法, 已知的超常搜索算法和一些稀少的解决方案。 超常搜索方法通过解决所有可能的最佳 convex 子问题。 原始问题包括多种限制的不连续术语。 我们提出了一种标准近似方法, $_ 1, ell\\\ nell\\\\\ lideal lidealmadealdealdeal madeal deal max maus max max max max max max asout max asolution asomal max max max max max max afreax

0
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年3月18日
Arxiv
0+阅读 · 2021年4月4日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
8+阅读 · 2019年3月18日
Top
微信扫码咨询专知VIP会员