Data augmentations are effective in improving the invariance of learning machines. We argue that the core challenge of data augmentations lies in designing data transformations that preserve labels. This is relatively straightforward for images, but much more challenging for graphs. In this work, we propose GraphAug, a novel automated data augmentation method aiming at computing label-invariant augmentations for graph classification. Instead of using uniform transformations as in existing studies, GraphAug uses an automated augmentation model to avoid compromising critical label-related information of the graph, thereby producing label-invariant augmentations at most times. To ensure label-invariance, we develop a training method based on reinforcement learning to maximize an estimated label-invariance probability. Experiments show that GraphAug outperforms previous graph augmentation methods on various graph classification tasks.
翻译:数据增强对于改进学习机器的易变性是有效的。 我们认为,数据增强的核心挑战在于设计保存标签的数据转换。 对于图像来说,这相对简单,但对于图表来说则更具有挑战性。 在这项工作中,我们提议了“GigapAug”,这是一个新的自动化数据增强方法,旨在计算标签-异变性增强值以进行图表分类。GigapAug没有像现有的研究那样使用统一转换法,而是使用自动增强模型来避免损害图表中与标签有关的关键信息,从而在多数时候产生标签-异变性增强值。为了确保标签-易变性增强值,我们开发了一个基于强化学习的培训方法,以最大限度地增加估计的标签-易变性概率。实验显示,“GigapAug”在各种图表分类任务中都超过了以前的图形增强方法。</s>