The current COVID-19 pandemic overloads healthcare systems, including radiology departments. Though several deep learning approaches were developed to assist in CT analysis, nobody considered study triage directly as a computer science problem. We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight studies of severe patients and direct them to a hospital or provide emergency medical care. We formalize these tasks as binary classification and estimation of affected lung percentage. Though similar problems were well-studied separately, we show that existing methods provide reasonable quality only for one of these setups. We employ a multitask approach to consolidate both triage approaches and propose a convolutional neural network to combine all available labels within a single model. In contrast with the most popular multitask approaches, we add classification layers to the most spatially detailed upper part of U-Net instead of the bottom, less detailed latent representation. We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in an out-patient hospital. The proposed multitask model outperforms the latent-based one and achieves ROC AUC scores ranging from 0.87+-01 (bacterial pneumonia) to 0.97+-01 (healthy controls) for Identification of COVID-19 and 0.97+-01 Spearman Correlation for Severity quantification. We release all the code and create a public leaderboard, where other community members can test their models on our test dataset.


翻译:目前COVID-19大流行使医疗保健系统,包括放射科部门超负荷超负荷。虽然为协助CT分析制定了若干深层次的学习方法,但没有人认为直接研究分级是计算机科学问题。我们描述两个基本设置:确定COVID-19,优先研究可能感染的病人,以便尽早孤立他们; 将重病患者的研究集中到医院或提供紧急医疗护理; 将这些任务正规化,作为受影响的肺百分比的二进制分类和估计。 尽管类似的问题分别得到了很好地研究,但我们表明,现有方法只为其中之一提供了合理的质量。 我们采用了多任务方法,以巩固分级方法,直接研究作为计算机科学科学问题。 我们采用了多任务方法,将所有现有标签集中到可能感染的病人的研究中,以便尽早隔离; 与最受欢迎的多任务方法不同,我们把分类层次加到最详细的U-Net上端部分,而不是底部,不那么详细的潜伏代表比例。 我们为2000年左右公开提供的CT研究模型,并测试该模型由32个COVI-19研究构成的精心设计的数据集,30个案例涉及细菌-CSB-CSBER-CS-CSlimal-CS-C Slimal-C 测试一个典型的典型病人和30个样本测试。我们提出的一个典型的临床-roal-romoudal-romodal-romodal-romodal-ex-ex-ex-ex-ex-ex-ex-stal-ex-ex-ex-ex-ex-ex-ex-ex-ex-rodu。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员