Magnetic Resonance (MR) image reconstruction from highly undersampled $k$-space data is critical in accelerated MR imaging (MRI) techniques. In recent years, deep learning-based methods have shown great potential in this task. This paper proposes a learned half-quadratic splitting algorithm for MR image reconstruction and implements the algorithm in an unrolled deep learning network architecture. We compare the performance of our proposed method on a public cardiac MR dataset against DC-CNN and LPDNet, and our method outperforms other methods in both quantitative results and qualitative results with fewer model parameters and faster reconstruction speed. Finally, we enlarge our model to achieve superior reconstruction quality, and the improvement is $1.76$ dB and $2.74$ dB over LPDNet in peak signal-to-noise ratio on $5\times$ and $10\times$ acceleration, respectively. Code for our method is publicly available at https://github.com/hellopipu/HQS-Net.
翻译:磁共振成像(MRI)技术在加速MR成像(MRI)技术方面至关重要,近年来,深层次的学习方法显示了巨大的潜力。本文件建议为MR成像重建采用半半赤道分解算法,并在未滚动的深层学习网络结构中实施算法。我们用DC-CNN和LPDNet比较了我们关于公共心脏MR数据集的拟议方法的性能,用较少的模型参数和更快的重建速度在数量结果和质量结果方面优于其他方法。最后,我们扩大我们的模型,以达到更高的重建质量,在最高信号至噪音比率上,改进为1.76亿美元dB和2.74亿美元dB,分别以5美元和10美元加速速度计算。我们的方法代码可在https://github.com/hellopipu/HQS-Net上公开查阅。